Copied to
clipboard

G = C24.548C23order 128 = 27

29th non-split extension by C24 of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.548C23, C23.211C24, C22.332- (1+4), C22.492+ (1+4), (C22×C4)⋊4Q8, C22⋊Q817C4, C22.5(C4×Q8), C23.94(C2×Q8), (C23×C4).49C22, C2.2(C232Q8), C23.8Q8.4C2, C23.226(C4○D4), C22.33(C22×Q8), (C2×C42).418C22, (C22×C4).476C23, C22.102(C23×C4), C23.126(C22×C4), C23.7Q8.27C2, (C22×Q8).87C22, C23.63C237C2, C2.5(C22.32C24), C23.67C2315C2, C23.65C2315C2, C2.17(C22.11C24), C2.C42.47C22, C2.3(C23.41C23), C2.5(C22.33C24), C2.16(C23.33C23), C4⋊C411(C2×C4), C2.11(C2×C4×Q8), (C2×Q8)⋊13(C2×C4), (C2×C4).161(C2×Q8), (C4×C22⋊C4).21C2, C22⋊C4.31(C2×C4), (C2×C4).31(C22×C4), C22.96(C2×C4○D4), (C2×C22⋊Q8).16C2, (C2×C4⋊C4).181C22, (C22×C4).304(C2×C4), (C2×C22⋊C4).429C22, (C2×C2.C42).19C2, SmallGroup(128,1061)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C24.548C23
C1C2C22C23C24C23×C4C2×C2.C42 — C24.548C23
C1C22 — C24.548C23
C1C23 — C24.548C23
C1C23 — C24.548C23

Subgroups: 460 in 264 conjugacy classes, 148 normal (30 characteristic)
C1, C2 [×7], C2 [×4], C4 [×22], C22 [×7], C22 [×4], C22 [×12], C2×C4 [×16], C2×C4 [×46], Q8 [×4], C23, C23 [×6], C23 [×4], C42 [×4], C22⋊C4 [×8], C22⋊C4 [×4], C4⋊C4 [×12], C4⋊C4 [×6], C22×C4 [×2], C22×C4 [×20], C22×C4 [×8], C2×Q8 [×4], C2×Q8 [×2], C24, C2.C42 [×14], C2×C42 [×4], C2×C22⋊C4 [×4], C2×C4⋊C4 [×3], C2×C4⋊C4 [×6], C22⋊Q8 [×8], C23×C4 [×3], C22×Q8, C2×C2.C42, C4×C22⋊C4 [×2], C23.7Q8, C23.8Q8 [×2], C23.63C23 [×4], C23.65C23 [×2], C23.67C23 [×2], C2×C22⋊Q8, C24.548C23

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], Q8 [×4], C23 [×15], C22×C4 [×14], C2×Q8 [×6], C4○D4 [×2], C24, C4×Q8 [×4], C23×C4, C22×Q8, C2×C4○D4, 2+ (1+4) [×3], 2- (1+4), C2×C4×Q8, C22.11C24, C23.33C23, C22.32C24, C22.33C24, C232Q8, C23.41C23, C24.548C23

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=dc=cd, g2=c, eae-1=ab=ba, ac=ca, ad=da, af=fa, ag=ga, bc=cb, bd=db, fef-1=be=eb, gfg-1=bf=fb, bg=gb, geg-1=ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd >

Smallest permutation representation
On 64 points
Generators in S64
(1 3)(2 12)(4 10)(5 40)(6 8)(7 38)(9 11)(13 15)(14 44)(16 42)(17 19)(18 48)(20 46)(21 23)(22 52)(24 50)(25 27)(26 56)(28 54)(29 31)(30 60)(32 58)(33 35)(34 62)(36 64)(37 39)(41 43)(45 47)(49 51)(53 55)(57 59)(61 63)
(1 9)(2 10)(3 11)(4 12)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 39)(34 40)(35 37)(36 38)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 57 49 45)(2 30 50 18)(3 59 51 47)(4 32 52 20)(5 16 64 28)(6 41 61 53)(7 14 62 26)(8 43 63 55)(9 29 21 17)(10 58 22 46)(11 31 23 19)(12 60 24 48)(13 35 25 39)(15 33 27 37)(34 56 38 44)(36 54 40 42)
(1 55 51 41)(2 42 52 56)(3 53 49 43)(4 44 50 54)(5 30 62 20)(6 17 63 31)(7 32 64 18)(8 19 61 29)(9 27 23 13)(10 14 24 28)(11 25 21 15)(12 16 22 26)(33 59 39 45)(34 46 40 60)(35 57 37 47)(36 48 38 58)

G:=sub<Sym(64)| (1,3)(2,12)(4,10)(5,40)(6,8)(7,38)(9,11)(13,15)(14,44)(16,42)(17,19)(18,48)(20,46)(21,23)(22,52)(24,50)(25,27)(26,56)(28,54)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,57,49,45)(2,30,50,18)(3,59,51,47)(4,32,52,20)(5,16,64,28)(6,41,61,53)(7,14,62,26)(8,43,63,55)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(13,35,25,39)(15,33,27,37)(34,56,38,44)(36,54,40,42), (1,55,51,41)(2,42,52,56)(3,53,49,43)(4,44,50,54)(5,30,62,20)(6,17,63,31)(7,32,64,18)(8,19,61,29)(9,27,23,13)(10,14,24,28)(11,25,21,15)(12,16,22,26)(33,59,39,45)(34,46,40,60)(35,57,37,47)(36,48,38,58)>;

G:=Group( (1,3)(2,12)(4,10)(5,40)(6,8)(7,38)(9,11)(13,15)(14,44)(16,42)(17,19)(18,48)(20,46)(21,23)(22,52)(24,50)(25,27)(26,56)(28,54)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,57,49,45)(2,30,50,18)(3,59,51,47)(4,32,52,20)(5,16,64,28)(6,41,61,53)(7,14,62,26)(8,43,63,55)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(13,35,25,39)(15,33,27,37)(34,56,38,44)(36,54,40,42), (1,55,51,41)(2,42,52,56)(3,53,49,43)(4,44,50,54)(5,30,62,20)(6,17,63,31)(7,32,64,18)(8,19,61,29)(9,27,23,13)(10,14,24,28)(11,25,21,15)(12,16,22,26)(33,59,39,45)(34,46,40,60)(35,57,37,47)(36,48,38,58) );

G=PermutationGroup([(1,3),(2,12),(4,10),(5,40),(6,8),(7,38),(9,11),(13,15),(14,44),(16,42),(17,19),(18,48),(20,46),(21,23),(22,52),(24,50),(25,27),(26,56),(28,54),(29,31),(30,60),(32,58),(33,35),(34,62),(36,64),(37,39),(41,43),(45,47),(49,51),(53,55),(57,59),(61,63)], [(1,9),(2,10),(3,11),(4,12),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,39),(34,40),(35,37),(36,38),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,57,49,45),(2,30,50,18),(3,59,51,47),(4,32,52,20),(5,16,64,28),(6,41,61,53),(7,14,62,26),(8,43,63,55),(9,29,21,17),(10,58,22,46),(11,31,23,19),(12,60,24,48),(13,35,25,39),(15,33,27,37),(34,56,38,44),(36,54,40,42)], [(1,55,51,41),(2,42,52,56),(3,53,49,43),(4,44,50,54),(5,30,62,20),(6,17,63,31),(7,32,64,18),(8,19,61,29),(9,27,23,13),(10,14,24,28),(11,25,21,15),(12,16,22,26),(33,59,39,45),(34,46,40,60),(35,57,37,47),(36,48,38,58)])

Matrix representation G ⊆ GL8(𝔽5)

40000000
04000000
00100000
00010000
00004000
00000400
00000010
00000001
,
10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00001000
00000100
00000010
00000001
,
10000000
01000000
00400000
00040000
00004000
00000400
00000040
00000004
,
01000000
10000000
00030000
00300000
00000010
00000001
00004000
00000400
,
20000000
02000000
00400000
00040000
00003000
00000200
00000020
00000003
,
01000000
40000000
00010000
00400000
00000100
00001000
00000001
00000010

G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3],[0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

44 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4AF
order12···222224···44···4
size11···122222···24···4

44 irreducible representations

dim11111111112244
type+++++++++-+-
imageC1C2C2C2C2C2C2C2C2C4Q8C4○D42+ (1+4)2- (1+4)
kernelC24.548C23C2×C2.C42C4×C22⋊C4C23.7Q8C23.8Q8C23.63C23C23.65C23C23.67C23C2×C22⋊Q8C22⋊Q8C22×C4C23C22C22
# reps112124221164431

In GAP, Magma, Sage, TeX

C_2^4._{548}C_2^3
% in TeX

G:=Group("C2^4.548C2^3");
// GroupNames label

G:=SmallGroup(128,1061);
// by ID

G=gap.SmallGroup(128,1061);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,680,758,219,184,675]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=d*c=c*d,g^2=c,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,g*f*g^-1=b*f=f*b,b*g=g*b,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽